FunPlus特效专家张韶勇:如何利用跨平台工具快速制作像素动画?(转)

有些用于主机端的特效工具和插件可以和手游工具相结合,从而提高手游特效品质和制作效率。

FunPlus首席特效专家张韶勇对此感受颇深。他拥有16年特效工作经验,此前在海外做主机游戏的特效,回国后曾在网易阿里等公司负责手游的特效,目前加入了FunPlus,负责美术特效的工作。

在今年的北京国际游戏创新大会(BIGC)上,张韶勇分享了他对游戏特效技巧-像素动画制作的心得。不仅从美术角度思考如何在手游上呈现出更好的美术表现,还尝试引入主机端的开发技术,让冗杂的特效制作过程简化,到快速落地在手游中。

在他看来,艺术挑战技术,技术启发艺术。新的技术和工具的出现,为艺术创作的实现带来新的可能性和便捷。数字艺术的创作常常受限于游戏开发所使用的引擎和插件。但是如果美术多一点对数学的理解,就会发现很多工具是相通的。

一些在主机游戏中使用的技术可以消化,简化或局部地应用到手游开发中。比如 FluidNinjia 是在 Unreal engine 里使用的插件,但是它输出的序列帧流程图等资源可以在ASE中使用。这样我们就可以使用 Unreal Cascade,Niagara 粒子系统来设计特效需要的动态,通过 FluidNinjia 输出贴图资源。将其材质在ASE中简化重构。

这样把跨平台的工具融会贯通地使用,极大扩展了特效的创作和实现的空间。这需要特效师对工具后面的数学多一点理解。

以下是葡萄君整理的演讲实录:

今天和大家分享的内容是:「像素动画的原理和应用」。我很想把它讲到就算外行也能弄懂。同时也通过这个案例,和大家分享一下美术岗位怎么用形象思维来解释数学。

我做了16年的特效。之前在美国、加拿大做过《使命召唤》《暗黑血统》等主机游戏,回国之后先后在网易,阿里游戏,最后来到FunPlus,现在主要负责手游的项目。

从主机游戏到手游转变,我本能地考虑怎么把一些主机的游戏技术应用到手游上面。其中的一个典型例子就是像素动画在手游上的应用。

我是一名特效师,这个岗位也可以叫做特效动画师。动画师动的是角色的胳膊和腿,而特效师动的图片的像素,因为大多数时候,我们都是利用像素运动来模拟各种特效。

比如这个《星空》。现在大家看到的是运动的数字版,它就代表了像素动画要呈现的效果。

要实现这种效果并不难,最近有个叫Fluid Ninja的Unreal的插件,特效师可以应用Cascade,Niagara粒子系统,贴图,或者力场在其中模拟出我们想要的运动形式,产出流程图等贴图资源,然后再应用到Unity的ASE材质中。这个过程给了特效师设计像素动画的极大自由,而且十分便捷。

我们先讲一下像素动画的基本原理:

每一张图片其实都是由像素构成的。假如图片的分辨率是1024×1024,那么这1024个像素点都有其对应的坐标。

我们可以用一张“流程图”来操纵一张图片像素坐标的运动方向和强度,以得到我们想要的运动形式。

它涉及到两个最基本的概念:

其一是平面坐标系,这个就是上下左右4个方向。

其二,通道。我们的图片有百万种颜色都是由RGB三个不同的通道组合产生的。

那么我们可以试着将他们合在一起:把红绿通道分别对应坐标系的X值和Y值,这样就可以把图片的「灰度」和坐标系的数值对应起来。

坐标系大家都很清楚。下图在坐标系中左下角是(0,0),右上角可以设为(1,1),这就是一张相片最基本的的坐标系。当然,电脑里的坐标有些不太一样,它是左上角(0,0),右下(1,1)。

但是为了产生上下左右四个方向的运动,我们就得处理出正值和负值的区别。

我们让X和Y分别减去0.5,那么我的图片就能居中,中间点到了(0, 0)的位置;

原本(0, 1)的区间就变成(-0.5, 0.5)的区间,由此我们就能拥有正负两个方向的运动。

这张图是 Unreal 和 Unity 中的坐标节点图标:

你看到当中红绿的过度,其实就是两个通道灰度从黑到白的渐变过程,左边在红色通道里面,我们将黑色设置为0,白色设置为1,那么就有0到1的渐变;右边的绿色通道也同理,不过我们将它的位置设置为纵向,从黑色0到白色1。

这就是红绿通道的灰度值,对应坐标系的值。

知道了颜色的坐标运动,我们简单地描述成这样:

通常图片的灰度值是0到256,在流程图的红色通道里面,黑色产生向右的运动,白色向左运动;如果是绿色通道就是黑色向上,白色向下。128的中间灰为静止状态。换句话说,它不会产生任何的运动。

那么举一个实例,假如我们有这样一张图A:

怎样让他做左右运动成这样?

或者又怎样如此上下运动呢?

答案就是做出一张流程图。

这张流程图就是黑白两个条组成,红色通道、绿色通道是相同的黑白条(因为不用其他方向运动,所以我们把蓝色通道设置为黑色)。

我们现在回头看一下,这个左右运动就是红色通道起作用(绿色通道的灰度值是128的中间灰);而上下运动就是绿色通道起了作用(红色通道的灰度值是128的中间灰)。

这张图就可以解释背后的原理:当我们需要左右运动的时候,我们让红色通有黑白,让绿色通道是128灰度,不产生运动。

同样的图,我们将红色通道设置为128的灰度,绿色通道有黑白,那么他只有上下运动。

基于这个原理,我们找3张图来说明实操。平常工作当中,我们经常要做河流、烟雾、岩浆的运动,这几张静止的图片,几分钟之内就可以做成运动的图片。

我们只需要在Flowmap Painter软件里,像手指划过一样,顺着运动方向抹一下,它就会根据轨迹流动。

我们打开“涂抹”出来的流程图,原理就很显而易见了:因为除了我们需要运动的部分,其他部分都是128的灰度,运动着的部分就是比中间灰或亮或暗一些。

下面这个是像素动画用到的材质球,我用一张流程图扭曲了自己的照片。为了说明白一些,我将它分为ABC三个部分。

点击图片可放大查看原图

A部分看似复杂,其实只是加减乘除一样的算法,目的就是让图片的坐标移动:

One Minus——减1,其实就是首先把(0,0)放到左上角去,符合电脑的坐标规则;Append是将横纵两个方向坐标合在一起;Flow_Strength则是控制扭曲强度;

下面是B部分,Time,也是很重要的节点。打个比方,我们这里有个坐标,时间就是穿过0的过程,往下是过去,往上是未来,它是一条无限延伸的对角线。

而我们想获得重复的效果,就是让时间来回重复,就可以用Fract节点去掉整数。

让时间这一条线,从0开始,0.1走到0.9,到1的时候再重复回到0。意味着时间永远不会有的整数,他只会在0.1 – 0.9之间往复。这就产生了循环。

B部分和A部分是一样的运动,只是慢了0.5秒。但是可以看到都有跳帧的现象。我们用淡入淡出的遮罩来过滤掉跳帧部分——也就是C部分的工作。

试着把它还原成更形象的坐标图,这是Time原始的样子:

我们第一步把它变成小数往复:

再减去0.5以获得负值:

再用Abs把负值翻正过来,让它连续:

最后再乘以2来增大波动幅度,形成连续的波浪线。

最终我们得到这样一个淡入淡出的遮罩图融合A和B两部分,形成无缝循环。

像素动画可以用到很多的地方。比如说这个星球的游戏界面里,巨型风暴原本是一张静止的图片。

银河的运动、太阳的火焰、木星的风暴,全部都是用这种材质球处理的,而且效率非常高

在这个特效里,一张很多小点的黑白图和一张螺旋形状的流程图,两者合在一起,便可以做出一个近似黑洞的旋转结果。

这是我们的一款三消游戏,里面云的动态、怪物的斗篷、水的运动,都用到了这种Flowmap效果。

这个将怪物吸进瓶子的效果,烟雾消散的效果也是用Flowmap处理的像素动画。

制作流程图有很多讨巧的方法:

拿这张图片来举例,先将原图导入Flowmap Painter里面,用涂抹工具顺着运动方向抹几下,于是就可以导出这样一张流程图,十分钟不到。

如果是像木星上这么复杂的风暴运动我肯定是没有时间顺着方向一点点抹的,太复杂了,不过这也有办法。

可以用PS将它的红色通道灰度调整,不动的部分刷成128灰度;然后把绿色通黑白反相,把不想运动的地方用128灰度的刷一刷,于是,几分钟不到的时间就得到了一张木星风暴的流程图。

再比如我只有这样一个灰度图,它的运动也是有很多细节:

可以用CrazyBump拿这张灰度图直接产生Normal Map,我把蓝色通道设置黑的,只用红绿通道,就变成了流程图:

不过最酷的还是用FluidNinja这个插件,如火球、烟雾、爆炸,流体等各种运动,我们都可以用3种方式百分百地控制生产它们的运动。

第一种就是粒子系统。无非是用运动的粒子产生不同的黑白间隔比例,配上算法,就有了种种流体模拟的效果。不光是单帧,也可以设置成序列帧。第二种是用黑白图片,第三种是用力场。它让像素动画特效设计增加了极大的空间。

我们做手游因为包体的大小会受到控制,特效贴图用512×512就会是常大的图了,尤其我们做序列帧的时候。比如说512×512,我们把它分割成4×4=16帧,每个单位都是256,低于这个值,手机上就会看得很模糊。

游戏是每秒30帧播放,16帧的序列图勉强可以在1s内让你觉得特效过得去。现在有了序列帧的流动图,我们就可以将它做到几倍的特效时长。

比如一个爆炸特效,左边这个爆炸是用8×8 64的序列帧,2秒的特效,很顺滑。但假如这是一个原子弹爆炸,让你做30s以上, 1秒就是30帧,30秒就得900帧,那得多大的序列帧贴图啊?右边这个就是用了序列帧流程图的效果,很长但没有卡顿。

材质球就会稍微复杂一些:

目的是用序列帧的流动图为序列帧增加中间帧:

基本道理就是将当前帧往外扭曲,然后下一帧往内扭曲,关键帧缩紧放大后,就出现了两个中间帧,帧数变多,画面自然变丝滑。

最后总结一下像素动画的优缺点:

优点是可以很快、精确地产生我们想要的运动。方法非常简单,制作流程图可以用Flowmap Painter、PS、CrazyBump,还有现在最酷的FluidNinja,借助它我们可以把Unreal、Unity结合起来使用。

序列帧流动图除了产生很细节的运动以外,可以大幅度降低我们的图片大小。

像素动画的的缺点就是动作是重复的。

ComputeShader手机兼容性

官方文档对设备的要求:

Compute shaders in Unity closely match DirectX 11 DirectCompute technology. Platforms where compute shaders work:

  • Windows and Windows Store, with a DirectX 11 or DirectX 12 graphics API and Shader Model 5.0 GPU
  • macOS and iOS
     using Metal graphics API
  • Android, Linux and Windows platforms with Vulkan API
  • Modern OpenGL platforms (OpenGL 4.3 on Linux or Windows; OpenGL ES 3.1 on Android). Note that Mac OS X does not support OpenGL 4.3
  • Modern consoles (Sony PS4 and Microsoft Xbox One)

Compute shader support can be queried runtime using SystemInfo.supportsComputeShaders.

对比GPU Instancing技术:

GPU Instancing is available on the following platforms and APIs:

  • DirectX 11 and DirectX 12 on Windows
  • OpenGL Core 4.1+/ES3.0+ on Windows, macOS, Linux, iOS
     and Android
  • Metal on macOS and iOS
  • Vulkan on Windows, Linux and Android
  • PlayStation 4
     and Xbox One
  • WebGL
     (requires WebGL 2.0 API)

网友给出的兼容性测试报告:

简介

  Compute Shader是微软DirectX 11 API新加入的特性,在Compute Shader的帮助下,程序员可直接将GPU作为并行处理器加以利用,GPU将不仅具有3D渲染能力,也具有其他的运算能力,也就是我们说的GPGPU的概念和物理加速运算。多线程处理技术使游戏更好地利用系统的多个核心。故对其在手机上的支持情况做了如下测试与分析。

Android

  利用WeTest测试213台手机,返回201台手机信息。具体测试信息如下:

OpenGL ES 3.2    ShaderModel 5.0 112台
OpenGL ES 3.1    ShaderModel 5.0 50台
OpenGL ES 3.1    ShaderModel 4.5 16台
OpenGL ES 3.0    ShaderModel 3.5 22台
OpenGL ES 2.0    ShaderModel 3.0 1台

  利用WeTest测试Top100常用手机,返回99台手机信息。具体测试信息如下:

OpenGL ES 3.2    ShaderModel 5.0 58台
OpenGL ES 3.1    ShaderModel 5.0 22台
OpenGL ES 3.1    ShaderModel 4.5 10台
OpenGL ES 3.0    ShaderModel 3.5 9台

  Android5.0开始支持Compute Shaders,来源如下: https://developer.android.google.cn/about/versions/android-5.0

  在所有测试的Android手机中,OpenGL ES 3.1以上的手机均使用的是Shader Model 4.5或Shader Model 5.0,在使用unity提供的API SystemInfo.supportsComputeShaders在上述手机显示为true,但通过运行一段ComputeShader程序,在Shader Model4.5上运行结果却不符合预期。

  综上所述,Shader Model 5.0开始支持ComputeShader。但文档说OpenGL ES 3.1就已经支持,unity API返回结果也是如此,为什么Shader Model4.5不支持还有待探讨。

iOS

  根据苹果开发文档,从iOS 9开始支持Compute Shaders:https://developer.apple.com/library/archive/releasenotes/General/WhatsNewIniOS/Articles/iOS9.html#//apple_ref/doc/uid/TP40016198-SW1

  iPhone所使用的图形API为Metal,ComputeShader在iphone6 ios10 系统已经支持(再早的iphone手机由于没有测试设备,没有分析)。 以上测试方法是通过两方面进行,一是使用unity提供的API SystemInfo.supportsComputeShaders在上述设备显示为true,二是通过运行一段ComputeShader程序,运行结果也符合预期。

总结

1.ComputeShader技术在Android上运行要求:Shader Model 5.0的设备(OpenGL ES 3.1及以上设备大部分满足此条件,少数3.1的设备不满足)。

2.ComputeShader技术在iOS上运行要求:系统软件最低为iOS 9(iPhone6之前的因缺乏设备未能测试,有需要的看官请自行测试)。

原文链接:https://blog.csdn.net/weixin_39630182/article/details/112293859

深入GPU硬件架构及运行机制(转)

原文地址

一、导言

对于大多数图形渲染开发者,GPU是既熟悉又陌生的部件,熟悉的是每天都需要跟它打交道,陌生的是GPU就如一个黑盒,不知道其内部硬件架构,更无从谈及其运行机制。

本文以NVIDIA作为主线,将试图全面且深入地剖析GPU的硬件架构及运行机制,主要涉及PC桌面级的GPU,不会覆盖移动端、专业计算、图形工作站级别的GPU。

若要通读本文,要求读者有一定图形学的基础,了解GPU渲染管线,最好写过HLSL、GLSL等shader代码。

1.1 为何要了解GPU?

了解GPU硬件架构和理解运行机制,笔者认为好处多多,总结出来有:

  • 理解GPU其物理结构和运行机制,GPU由黑盒变白盒。
  • 更易找出渲染瓶颈,写出高效率shader代码。
  • 紧跟时代潮流,了解最前沿渲染技术!
  • 技多不压身!

1.2 内容要点

本文的内容要点提炼如下:

  • GPU简介、历史、特性。
  • GPU硬件架构。
  • GPU和CPU的协调调度机制。
  • GPU缓存结构。
  • GPU渲染管线。
  • GPU运行机制。
  • GPU优化技巧。

1.3 带着问题阅读

适当带着问题去阅读技术文章,通常能加深理解和记忆,阅读本文可带着以下问题:

1、GPU是如何与CPU协调工作的?

2、GPU也有缓存机制吗?有几层?它们的速度差异多少?

3、GPU的渲染流程有哪些阶段?它们的功能分别是什么?

4、Early-Z技术是什么?发生在哪个阶段?这个阶段还会发生什么?会产生什么问题?如何解决?

5、SIMD和SIMT是什么?它们的好处是什么?co-issue呢?

6、GPU是并行处理的么?若是,硬件层是如何设计和实现的?

7、GPC、TPC、SM是什么?Warp又是什么?它们和Core、Thread之间的关系如何?

8、顶点着色器(VS)和像素着色器(PS)可以是同一处理单元吗?为什么?

9、像素着色器(PS)的最小处理单位是1像素吗?为什么?会带来什么影响?

10、Shader中的if、for等语句会降低渲染效率吗?为什么?

11、如下图,渲染相同面积的图形,三角形数量少(左)的还是数量多(右)的效率更快?为什么?

12、GPU Context是什么?有什么作用?

13、造成渲染瓶颈的问题很可能有哪些?该如何避免或优化它们?

如果阅读完本文,能够非常清晰地回答以上所有问题,那么,恭喜你掌握到本文的精髓了!

二、GPU概述

2.1 GPU是什么?

GPU全称是Graphics Processing Unit,图形处理单元。它的功能最初与名字一致,是专门用于绘制图像和处理图元数据的特定芯片,后来渐渐加入了其它很多功能。

NVIDIA GPU芯片实物图

我们日常讨论GPU和显卡时,经常混为一谈,严格来说是有所区别的。GPU是显卡(Video card、Display card、Graphics card)最核心的部件,但除了GPU,显卡还有扇热器、通讯元件、与主板和显示器连接的各类插槽。

对于PC桌面,生产GPU的厂商主要有两家:

  • NVIDIA:英伟达,是当今首屈一指的图形渲染技术的引领者和GPU生产商佼佼者。NVIDIA的产品俗称N卡,代表产品有GeForce系列、GTX系列、RTX系列等。
  • AMD:既是CPU生产商,也是GPU生产商,它家的显卡俗称A卡。代表产品有Radeon系列。

当然,NVIDIA和AMD也都生产移动端、图形工作站类型的GPU。此外,生产移动端显卡的厂商还有ARM、Imagination Technology、高通等公司。

2.2 GPU历史

GPU自从上世纪90年代出现雏形以来,经过20多年的发展,已经发展成不仅仅是渲染图形这么简单,还包含了数学计算、物理模拟、AI运算等功能。

2.2.1 NV GPU发展史

以下是GPU发展节点表:

  • 1995 – NV1
  • NV1的渲染画面及其特性。
  • 1997 – Riva 128 (NV3), DX3
  • 1998 – Riva TNT (NV4), DX5
    • 32位颜色, 24位Z缓存, 8位模板缓存
    • 双纹理, 双线性过滤
    • 每时钟2像素 (2 ppc)
  • 1999 – GeForce 256(NV10)
    • 固定管线,支持DirectX 7.0
    • 硬件T&L(Transform & lighting,坐标变换和光照)
    • 立方体环境图(Cubemaps)
    • DOT3 – bump mapping
    • 2倍各向异性过滤
    • 三线性过滤
    • DXT纹理压缩
    • 4ppc
    • 引入“GPU”术语
  • NV10的渲染画面及其特性。
  • 2001 – GeForce 3
    • DirectX 8.0
    • Shader Model 1.0
    • 可编程渲染管线
      • 顶点着色器
      • 像素着色器
    • 3D纹理
    • 硬件阴影图
    • 8倍各向异性过滤
    • 多采样抗锯齿(MSAA)
    • 4 ppc
  • NV20的渲染画面及其特性。
  • 2003 – GeForce FX系列(NV3x)
    • DirectX 9.0
    • Shader Model 2.0
      • 256顶点操作指令
      • 32纹理 + 64算术像素操作指令
    • Shader Model 2.0a
      • 256顶点操作指令
      • 512像素操作指令
    • 着色语言
      • HLSL
      • CGSL
      • GLSL

NV30的渲染画面及其特性。

  • 2004 – GeForce 6系列 (NV4x)
    • DirectX 9.0c
    • Shader Model 3.0
    • 动态流控制
      • 分支、循环、声明等
    • 顶点纹理读取
    • 高动态范围(HDR)
      • 64位渲染纹理(Render Target)
      • FP16*4 纹理过滤和混合

NV40的渲染画面及其特性。

  • 2006 – GeForce 8系列 (G8x)
    • DirectX 10.0
    • Shader Model 4.0
      • 几何着色器(Geometry Shaders)
      • 没有上限位(No caps bits)
      • 统一的着色器(Unified Shaders)
    • Vista系统全新驱动
    • 基于GPU计算的CUDA问世
    • GPU计算能力以GFLOPS计量。
  • NV G80的渲染画面及其特性。
  • 2010 – GeForce 405(GF119)
    • DirectX 11.0
      • 曲面细分(Tessellation)
        • 外壳着色器(Hull Shader)
        • 镶嵌单元(tessellator)
        • 域着色器(Domain Shader)
      • 计算着色器(Compute Shader)
        • 支持Stream Output
Vertex Shader. Hull Shader. Tessellator. Domain Shader. Stream Output. Geometry Shader. Rasterizer. Data Structure. Compute Shader. Pixel Shader. Output Merger.
  • DirectX 11的渲染管线。
    • 多线程支持
    • 改进的纹理压缩
  • Shader Model 5.0
    • 更多指令、存储单元、寄存器
    • 面向对象着色语言
    • 曲面细分
    • 计算着色器
  • 支持RTX光线追踪的显卡列表。
  • 2018 – TITAN RTX(TU102)
    • DirectX 12.1,OpenGL 4.5
    • 6GPC,36TPC,72SM,72RT Core,…
    • 8K分辨率,1770MHz主频,24G显存,384位带宽

从上面可以看出来,GPU硬件是伴随着图形API标准、游戏一起发展的,并且它们形成了相互相成、相互促进的良性关系。

2.2.2 NV GPU架构发展史

众所周知,CPU的发展符合摩尔定律:每18个月速度翻倍。

处理芯片晶体管数量符合摩尔定律,图右是摩尔本人,Intel的创始人

而NVIDIA创始人黄仁勋在很多年前曾信誓旦旦地说,GPU的速度和功能要超越摩尔定律,每6个月就翻一倍。NV的GPU发展史证明,他确实做到了!GPU的提速幅率远超CPU:

NVIDIA GPU架构历经多次变革,从起初的Tesla发展到最新的Turing架构,发展史可分为以下时间节点:

  • 2008 – TeslaTesla最初是给计算处理单元使用的,应用于早期的CUDA系列显卡芯片中,并不是真正意义上的普通图形处理芯片。
  • 2010 – FermiFermi是第一个完整的GPU计算架构。首款可支持与共享存储结合纯cache层次的GPU架构,支持ECC的GPU架构。
  • 2012 – KeplerKepler相较于Fermi更快,效率更高,性能更好。
  • 2014 – Maxwell其全新的立体像素全局光照 (VXGI) 技术首次让游戏 GPU 能够提供实时的动态全局光照效果。基于 Maxwell 架构的 GTX 980 和 970 GPU 采用了包括多帧采样抗锯齿 (MFAA)、动态超级分辨率 (DSR)、VR Direct 以及超节能设计在内的一系列新技术。
  • 2016 – PascalPascal 架构将处理器和数据集成在同一个程序包内,以实现更高的计算效率。1080系列、1060系列基于Pascal架构
  • 2017 – VoltaVolta 配备640 个Tensor 核心,每秒可提供超过100 兆次浮点运算(TFLOPS) 的深度学习效能,比前一代的Pascal 架构快5 倍以上。
  • 2018 – TuringTuring 架构配备了名为 RT Core 的专用光线追踪处理器,能够以高达每秒 10 Giga Rays 的速度对光线和声音在 3D 环境中的传播进行加速计算。Turing 架构将实时光线追踪运算加速至上一代 NVIDIA Pascal™ 架构的 25 倍,并能以高出 CPU 30 多倍的速度进行电影效果的最终帧渲染。2060系列、2080系列显卡也是跳过了Volta直接选择了Turing架构。

下图是部分GPU架构的发展历程:

2.3 GPU的功能

现代GPU除了绘制图形外,还担当了很多额外的功能,综合起来如下几方面:

  • 图形绘制。这是GPU最传统的拿手好戏,也是最基础、最核心的功能。为大多数PC桌面、移动设备、图形工作站提供图形处理和绘制功能。
  • 物理模拟。GPU硬件集成的物理引擎(PhysX、Havok),为游戏、电影、教育、科学模拟等领域提供了成百上千倍性能的物理模拟,使得以前需要长时间计算的物理模拟得以实时呈现。
  • 海量计算。计算着色器及流输出的出现,为各种可以并行计算的海量需求得以实现,CUDA就是最好的例证。
  • AI运算。近年来,人工智能的崛起推动了GPU集成了AI Core运算单元,反哺AI运算能力的提升,给各行各业带来了计算能力的提升。
  • 其它计算。音视频编解码、加解密、科学计算、离线渲染等等都离不开现代GPU的并行计算能力和海量吞吐能力。

三、GPU物理架构

3.1 GPU宏观物理结构

由于纳米工艺的引入,GPU可以将数以亿记的晶体管和电子器件集成在一个小小的芯片内。从宏观物理结构上看,现代大多数桌面级GPU的大小跟数枚硬币同等大小,部分甚至比一枚硬币还小(下图)。

高通骁龙853显示芯片比硬币还小

当GPU结合散热风扇、PCI插槽、HDMI接口等部件之后,就组成了显卡(下图)。

显卡不能独立工作,需要装载在主板上,结合CPU、内存、显存、显示器等硬件设备,组成完整的PC机。

搭载了显卡的主板。

3.2 GPU微观物理结构

GPU的微观结构因不同厂商、不同架构都会有所差异,但核心部件、概念、以及运行机制大同小异。下面将展示部分架构的GPU微观物理结构。

3.2.1 NVidia Tesla架构

Tesla微观架构总览图如上。下面将阐述它的特性和概念:

  • 拥有7组TPC(Texture/Processor Cluster,纹理处理簇)
  • 每个TPC有两组SM(Stream Multiprocessor,流多处理器)
  • 每个SM包含:
    • 6个SP(Streaming Processor,流处理器)
    • 2个SFU(Special Function Unit,特殊函数单元)
    • L1缓存、MT Issue(多线程指令获取)、C-Cache(常量缓存)、共享内存
  • 除了TPC核心单元,还有与显存、CPU、系统内存交互的各种部件。

3.2.2 NVidia Fermi架构

Fermi架构如上图,它的特性如下:

  • 拥有16个SM
  • 每个SM:
    • 2个Warp(线程束)
    • 两组共32个Core
    • 16组加载存储单元(LD/ST)
    • 4个特殊函数单元(SFU)
  • 每个Warp:
    • 16个Core
    • Warp编排器(Warp Scheduler)
    • 分发单元(Dispatch Unit)
  • 每个Core:
    • 1个FPU(浮点数单元)
    • 1个ALU(逻辑运算单元)

3.2.3 NVidia Maxwell架构

采用了Maxwell的GM204,拥有4个GPC,每个GPC有4个SM,对比Tesla架构来说,在处理单元上有了很大的提升。

3.2.4 NVidia Kepler架构

Kepler除了在硬件有了提升,有了更多处理单元之外,还将SM升级到了SMX。SMX是改进的架构,支持动态创建渲染线程(下图),以降低延迟。

3.2.5 NVidia Turing架构

上图是采纳了Turing架构的TU102 GPU,它的特点如下:

  • 6 GPC(图形处理簇)
  • 36 TPC(纹理处理簇)
  • 72 SM(流多处理器)
  • 每个GPC有6个TPC,每个TPC有2个SM
  • 4,608 CUDA核
  • 72 RT核
  • 576 Tensor核
  • 288 纹理单元
  • 12×32位 GDDR6内存控制器 (共384位)

单个SM的结构图如下:

每个SM包含:

  • 64 CUDA核
  • 8 Tensor核
  • 256 KB寄存器文件

TU102 GPU芯片实物图:

3.3 GPU架构的共性

纵观上一节的所有GPU架构,可以发现它们虽然有所差异,但存在着很多相同的概念和部件:

  • GPC
  • TPC
  • Thread
  • SM、SMX、SMM
  • Warp
  • SP
  • Core
  • ALU
  • FPU
  • SFU
  • ROP
  • Load/Store Unit
  • L1 Cache
  • L2 Cache
  • Memory
  • Register File

以上各个部件的用途将在下一章详细阐述。

GPU为什么会有这么多层级且有这么多雷同的部件?答案是GPU的任务是天然并行的,现代GPU的架构皆是以高度并行能力而设计的。

四、GPU运行机制

4.1 GPU渲染总览

由上一章可得知,现代GPU有着相似的结构,有很多相同的部件,在运行机制上,也有很多共同点。下面是Fermi架构的运行机制总览图:

从Fermi开始NVIDIA使用类似的原理架构,使用一个Giga Thread Engine来管理所有正在进行的工作,GPU被划分成多个GPCs(Graphics Processing Cluster),每个GPC拥有多个SM(SMX、SMM)和一个光栅化引擎(Raster Engine),它们其中有很多的连接,最显著的是Crossbar,它可以连接GPCs和其它功能性模块(例如ROP或其他子系统)。

程序员编写的shader是在SM上完成的。每个SM包含许多为线程执行数学运算的Core(核心)。例如,一个线程可以是顶点或像素着色器调用。这些Core和其它单元由Warp Scheduler驱动,Warp Scheduler管理一组32个线程作为Warp(线程束)并将要执行的指令移交给Dispatch Units。

GPU中实际有多少这些单元(每个GPC有多少个SM,多少个GPC ……)取决于芯片配置本身。例如,GM204有4个GPC,每个GPC有4个SM,但Tegra X1有1个GPC和2个SM,它们均采用Maxwell设计。SM设计本身(内核数量,指令单位,调度程序……)也随着时间的推移而发生变化,并帮助使芯片变得如此高效,可以从高端台式机扩展到笔记本电脑移动。

如上图,对于某些GPU(如Fermi部分型号)的单个SM,包含:

  • 32个运算核心 (Core,也叫流处理器Stream Processor)
  • 16个LD/ST(load/store)模块来加载和存储数据
  • 4个SFU(Special function units)执行特殊数学运算(sin、cos、log等)
  • 128KB寄存器(Register File)
  • 64KB L1缓存
  • 全局内存缓存(Uniform Cache)
  • 纹理读取单元
  • 纹理缓存(Texture Cache)
  • PolyMorph Engine:多边形引擎负责属性装配(attribute Setup)、顶点拉取(VertexFetch)、曲面细分、栅格化(这个模块可以理解专门处理顶点相关的东西)。
  • 2个Warp Schedulers:这个模块负责warp调度,一个warp由32个线程组成,warp调度器的指令通过Dispatch Units送到Core执行。
  • 指令缓存(Instruction Cache)
  • 内部链接网络(Interconnect Network)

4.2 GPU逻辑管线

了解上一节的部件和概念之后,可以深入阐述GPU的渲染过程和步骤。下面将以Fermi家族的SM为例,进行逻辑管线的详细说明。

1、程序通过图形API(DX、GL、WEBGL)发出drawcall指令,指令会被推送到驱动程序,驱动会检查指令的合法性,然后会把指令放到GPU可以读取的Pushbuffer中。

2、经过一段时间或者显式调用flush指令后,驱动程序把Pushbuffer的内容发送给GPU,GPU通过主机接口(Host Interface)接受这些命令,并通过前端(Front End)处理这些命令。

3、在图元分配器(Primitive Distributor)中开始工作分配,处理indexbuffer中的顶点产生三角形分成批次(batches),然后发送给多个PGCs。这一步的理解就是提交上来n个三角形,分配给这几个PGC同时处理。

4、在GPC中,每个SM中的Poly Morph Engine负责通过三角形索引(triangle indices)取出三角形的数据(vertex data),即图中的Vertex Fetch模块。

5、在获取数据之后,在SM中以32个线程为一组的线程束(Warp)来调度,来开始处理顶点数据。Warp是典型的单指令多线程(SIMT,SIMD单指令多数据的升级)的实现,也就是32个线程同时执行的指令是一模一样的,只是线程数据不一样,这样的好处就是一个warp只需要一个套逻辑对指令进行解码和执行就可以了,芯片可以做的更小更快,之所以可以这么做是由于GPU需要处理的任务是天然并行的。

6、SM的warp调度器会按照顺序分发指令给整个warp,单个warp中的线程会锁步(lock-step)执行各自的指令,如果线程碰到不激活执行的情况也会被遮掩(be masked out)。被遮掩的原因有很多,例如当前的指令是if(true)的分支,但是当前线程的数据的条件是false,或者循环的次数不一样(比如for循环次数n不是常量,或被break提前终止了但是别的还在走),因此在shader中的分支会显著增加时间消耗,在一个warp中的分支除非32个线程都走到if或者else里面,否则相当于所有的分支都走了一遍,线程不能独立执行指令而是以warp为单位,而这些warp之间才是独立的。

7、warp中的指令可以被一次完成,也可能经过多次调度,例如通常SM中的LD/ST(加载存取)单元数量明显少于基础数学操作单元。

8、由于某些指令比其他指令需要更长的时间才能完成,特别是内存加载,warp调度器可能会简单地切换到另一个没有内存等待的warp,这是GPU如何克服内存读取延迟的关键,只是简单地切换活动线程组。为了使这种切换非常快,调度器管理的所有warp在寄存器文件中都有自己的寄存器。这里就会有个矛盾产生,shader需要越多的寄存器,就会给warp留下越少的空间,就会产生越少的warp,这时候在碰到内存延迟的时候就会只是等待,而没有可以运行的warp可以切换。

9、一旦warp完成了vertex-shader的所有指令,运算结果会被Viewport Transform模块处理,三角形会被裁剪然后准备栅格化,GPU会使用L1和L2缓存来进行vertex-shader和pixel-shader的数据通信。

10、接下来这些三角形将被分割,再分配给多个GPC,三角形的范围决定着它将被分配到哪个光栅引擎(raster engines),每个raster engines覆盖了多个屏幕上的tile,这等于把三角形的渲染分配到多个tile上面。也就是像素阶段就把按三角形划分变成了按显示的像素划分了。

11、SM上的Attribute Setup保证了从vertex-shader来的数据经过插值后是pixel-shade是可读的。

12、GPC上的光栅引擎(raster engines)在它接收到的三角形上工作,来负责这些这些三角形的像素信息的生成(同时会处理裁剪Clipping、背面剔除和Early-Z剔除)。

13、32个像素线程将被分成一组,或者说8个2×2的像素块,这是在像素着色器上面的最小工作单元,在这个像素线程内,如果没有被三角形覆盖就会被遮掩,SM中的warp调度器会管理像素着色器的任务。

14、接下来的阶段就和vertex-shader中的逻辑步骤完全一样,但是变成了在像素着色器线程中执行。 由于不耗费任何性能可以获取一个像素内的值,导致锁步执行非常便利,所有的线程可以保证所有的指令可以在同一点。

15、最后一步,现在像素着色器已经完成了颜色的计算还有深度值的计算,在这个点上,我们必须考虑三角形的原始api顺序,然后才将数据移交给ROP(render output unit,渲染输入单元),一个ROP内部有很多ROP单元,在ROP单元中处理深度测试,和framebuffer的混合,深度和颜色的设置必须是原子操作,否则两个不同的三角形在同一个像素点就会有冲突和错误。

4.3 GPU技术要点

由于上一节主要阐述GPU内部的工作流程和机制,为了简洁性,省略了很多知识点和过程,本节将对它们做进一步补充说明。

4.3.1 SIMD和SIMT

SIMD(Single Instruction Multiple Data)是单指令多数据,在GPU的ALU单元内,一条指令可以处理多维向量(一般是4D)的数据。比如,有以下shader指令:

float4 c = a + b; // a, b都是float4类型

对于没有SIMD的处理单元,需要4条指令将4个float数值相加,汇编伪代码如下:

ADD c.x, a.x, b.x
ADD c.y, a.y, b.y
ADD c.z, a.z, b.z
ADD c.w, a.w, b.w

但有了SIMD技术,只需一条指令即可处理完:

SIMD_ADD c, a, b

SIMT(Single Instruction Multiple Threads,单指令多线程)是SIMD的升级版,可对GPU中单个SM中的多个Core同时处理同一指令,并且每个Core存取的数据可以是不同的。

SIMT_ADD c, a, b

上述指令会被同时送入在单个SM中被编组的所有Core中,同时执行运算,但ab 、c的值可以不一样:

4.3.2 co-issue

co-issue是为了解决SIMD运算单元无法充分利用的问题。例如下图,由于float数量的不同,ALU利用率从100%依次下降为75%、50%、25%。

为了解决着色器在低维向量的利用率低的问题,可以通过合并1D与3D或2D与2D的指令。例如下图,DP3指令用了3D数据,ADD指令只有1D数据,co-issue会自动将它们合并,在同一个ALU只需一个指令周期即可执行完。

但是,对于向量运算单元(Vector ALU),如果其中一个变量既是操作数又是存储数的情况,无法启用co-issue技术:

于是标量指令着色器(Scalar Instruction Shader)应运而生,它可以有效地组合任何向量,开启co-issue技术,充分发挥SIMD的优势。

4.3.3 if – else语句

如上图,SM中有8个ALU(Core),由于SIMD的特性,每个ALU的数据不一样,导致if-else语句在某些ALU中执行的是true分支(黄色),有些ALU执行的是false分支(灰蓝色),这样导致很多ALU的执行周期被浪费掉了(即masked out),拉长了整个执行周期。最坏的情况,同一个SM中只有1/8(8是同一个SM的线程数,不同架构的GPU有所不同)的利用率。

同样,for循环也会导致类似的情形,例如以下shader代码:

void func(int count, int breakNum)
{
	for(int i=0; i<count; ++i)
	{
		if (i == breakNum)
			break;
		else
			// do something
	}
}

由于每个ALU的count不一样,加上有break分支,导致最快执行完shader的ALU可能是最慢的N分之一的时间,但由于SIMD的特性,最快的那个ALU依然要等待最慢的ALU执行完毕,才能接下一组指令的活!也就白白浪费了很多时间周期。

4.3.4 Early-Z

早期GPU的渲染管线的深度测试是在像素着色器之后才执行(下图),这样会造成很多本不可见的像素执行了耗性能的像素着色器计算。

后来,为了减少像素着色器的额外消耗,将深度测试提至像素着色器之前(下图),这就是Early-Z技术的由来。

Early-Z技术可以将很多无效的像素提前剔除,避免它们进入耗时严重的像素着色器。Early-Z剔除的最小单位不是1像素,而是像素块(pixel quad,2×2个像素,详见[4.3.6 ](#4.3.6 像素块(pixel quad)))。

但是,以下情况会导致Early-Z失效:

  • 开启Alpha Test:由于Alpha Test需要在像素着色器后面的Alpha Test阶段比较,所以无法在像素着色器之前就决定该像素是否被剔除。
  • 开启Alpha Blend:启用了Alpha混合的像素很多需要与frame buffer做混合,无法执行深度测试,也就无法利用Early-Z技术。
  • 开启Tex Kill:即在shader代码中有像素摒弃指令(DX的discard,OpenGL的clip)。
  • 关闭深度测试。Early-Z是建立在深度测试看开启的条件下,如果关闭了深度测试,也就无法启用Early-Z技术。
  • 开启Multi-Sampling:多采样会影响周边像素,而Early-Z阶段无法得知周边像素是否被裁剪,故无法提前剔除。
  • 以及其它任何导致需要混合后面颜色的操作。

此外,Early-Z技术会导致一个问题:深度数据冲突(depth data hazard)。

例子要结合上图,假设数值深度值5已经经过Early-Z即将写入Frame Buffer,而深度值10刚好处于Early-Z阶段,读取并对比当前缓存的深度值15,结果就是10通过了Early-Z测试,会覆盖掉比自己小的深度值5,最终frame buffer的深度值是错误的结果。

避免深度数据冲突的方法之一是在写入深度值之前,再次与frame buffer的值进行对比:

4.3.5 统一着色器架构(Unified shader Architecture)

在早期的GPU,顶点着色器和像素着色器的硬件结构是独立的,它们各有各的寄存器、运算单元等部件。这样很多时候,会造成顶点着色器与像素着色器之间任务的不平衡。对于顶点数量多的任务,像素着色器空闲状态多;对于像素多的任务,顶点着色器的空闲状态多(下图)。

于是,为了解决VS和PS之间的不平衡,引入了统一着色器架构(Unified shader Architecture)。用了此架构的GPU,VS和PS用的都是相同的Core。也就是,同一个Core既可以是VS又可以是PS。

这样就解决了不同类型着色器之间的不平衡问题,还可以减少GPU的硬件单元,压缩物理尺寸和耗电量。此外,VS、PS可还可以和其它着色器(几何、曲面、计算)统一为一体。

4.3.6 像素块(Pixel Quad)

上一节步骤13提到:

32个像素线程将被分成一组,或者说8个2×2的像素块,这是在像素着色器上面的最小工作单元,在这个像素线程内,如果没有被三角形覆盖就会被遮掩,SM中的warp调度器会管理像素着色器的任务。

也就是说,在像素着色器中,会将相邻的四个像素作为不可分隔的一组,送入同一个SM内4个不同的Core。

为什么像素着色器处理的最小单元是2×2的像素块?

笔者推测有以下原因:

1、简化和加速像素分派的工作。

2、精简SM的架构,减少硬件单元数量和尺寸。

3、降低功耗,提高效能比。

4、无效像素虽然不会被存储结果,但可辅助有效像素求导函数。详见4.6 利用扩展例证

这种设计虽然有其优势,但同时,也会激化过绘制(Over Draw)的情况,损耗额外的性能。比如下图中,白色的三角形只占用了3个像素(绿色),按我们普通的思维,只需要3个Core绘制3次就可以了。

但是,由于上面的3个像素分别占据了不同的像素块(橙色分隔),实际上需要占用12个Core绘制12次(下图)。

这就会额外消耗300%的硬件性能,导致了更加严重的过绘制情况。

更多详情可以观看虚幻官方的视频教学:实时渲染深入探究

4.4 GPU资源机制

本节将阐述GPU的内存访问、资源管理等机制。

4.4.1 内存架构

部分架构的GPU与CPU类似,也有多级缓存结构:寄存器、L1缓存、L2缓存、GPU显存、系统显存。

它们的存取速度从寄存器到系统内存依次变慢:

存储类型寄存器共享内存L1缓存L2缓存纹理、常量缓存全局内存
访问周期11~321~3232~64400~600400~600

由此可见,shader直接访问寄存器、L1、L2缓存还是比较快的,但访问纹理、常量缓存和全局内存非常慢,会造成很高的延迟。

上面的多级缓存结构可被称为“CPU-Style”,还存在GPU-Style的内存架构:

这种架构的特点是ALU多,GPU上下文(Context)多,吞吐量高,依赖高带宽与系统内存交换数据。

4.4.2 GPU Context和延迟

由于SIMT技术的引入,导致很多同一个SM内的很多Core并不是独立的,当它们当中有部分Core需要访问到纹理、常量缓存和全局内存时,就会导致非常大的卡顿(Stall)。

例如下图中,有4组上下文(Context),它们共用同一组运算单元ALU。

假设第一组Context需要访问缓存或内存,会导致2~3个周期的延迟,此时调度器会激活第二组Context以利用ALU:

当第二组Context访问缓存或内存又卡住,会依次激活第三、第四组Context,直到第一组Context恢复运行或所有都被激活:

延迟的后果是每组Context的总体执行时间被拉长了:

但是,越多Context可用就越可以提升运算单元的吞吐量,比如下图的18组Context的架构可以最大化地提升吞吐量:

4.4.3 CPU-GPU异构系统

根据CPU和GPU是否共享内存,可分为两种类型的CPU-GPU架构:

上图左是分离式架构,CPU和GPU各自有独立的缓存和内存,它们通过PCI-e等总线通讯。这种结构的缺点在于 PCI-e 相对于两者具有低带宽和高延迟,数据的传输成了其中的性能瓶颈。目前使用非常广泛,如PC、智能手机等。

上图右是耦合式架构,CPU 和 GPU 共享内存和缓存。AMD 的 APU 采用的就是这种结构,目前主要使用在游戏主机中,如 PS4。

在存储管理方面,分离式结构中 CPU 和 GPU 各自拥有独立的内存,两者共享一套虚拟地址空间,必要时会进行内存拷贝。对于耦合式结构,GPU 没有独立的内存,与 GPU 共享系统内存,由 MMU 进行存储管理。

4.4.4 GPU资源管理模型

下图是分离式架构的资源管理模型:

  • MMIO(Memory Mapped IO)
    • CPU与GPU的交流就是通过MMIO进行的。CPU 通过 MMIO 访问 GPU 的寄存器状态。
    • DMA传输大量的数据就是通过MMIO进行命令控制的。
    • I/O端口可用于间接访问MMIO区域,像Nouveau等开源软件从来不访问它。
  • GPU Context
    • GPU Context代表了GPU计算的状态。
    • 在GPU中拥有自己的虚拟地址。
    • GPU 中可以并存多个活跃态下的Context。
  • GPU Channel
    • 任何命令都是由CPU发出。
    • 命令流(command stream)被提交到硬件单元,也就是GPU Channel。
    • 每个GPU Channel关联一个context,而一个GPU Context可以有多个GPU channel。
    • 每个GPU Context 包含相关channel的 GPU Channel Descriptors , 每个 Descriptor 都是 GPU 内存中的一个对象。
    • 每个 GPU Channel Descriptor 存储了 Channel 的设置,其中就包括 Page Table 。
    • 每个 GPU Channel 在GPU内存中分配了唯一的命令缓存,这通过MMIO对CPU可见。
    • GPU Context Switching 和命令执行都在GPU硬件内部调度。
  • GPU Page Table
    • GPU Context在虚拟基地空间由Page Table隔离其它的Context 。
    • GPU Page Table隔离CPU Page Table,位于GPU内存中。
    • GPU Page Table的物理地址位于 GPU Channel Descriptor中。
    • GPU Page Table不仅仅将 GPU虚拟地址转换成GPU内存的物理地址,也可以转换成CPU的物理地址。因此,GPU Page Table可以将GPU虚拟地址和CPU内存地址统一到GPU统一虚拟地址空间来。
  • PCI-e BAR
    • GPU 设备通过PCI-e总线接入到主机上。 Base Address Registers(BARs) 是 MMIO的窗口,在GPU启动时候配置。
    • GPU的控制寄存器和内存都映射到了BARs中。
    • GPU设备内存通过映射的MMIO窗口去配置GPU和访问GPU内存。
  • PFIFO Engine
    • PFIFO是GPU命令提交通过的一个特殊的部件。
    • PFIFO维护了一些独立命令队列,也就是Channel。
    • 此命令队列是Ring Buffer,有PUT和GET的指针。
    • 所有访问Channel控制区域的执行指令都被PFIFO 拦截下来。
    • GPU驱动使用Channel Descriptor来存储相关的Channel设定。
    • PFIFO将读取的命令转交给PGRAPH Engine。
  • BO
    • Buffer Object (BO),内存的一块(Block),能够用于存储纹理(Texture)、渲染目标(Render Target)、着色代码(shader code)等等。
    • Nouveau和Gdev经常使用BO。Nouveau是一个自由及开放源代码显卡驱动程序,是为NVidia的显卡所编写。Gdev是一套丰富的开源软件,用于NVIDIA的GPGPU技术,包括设备驱动程序。

更多详细可以阅读论文:Data Transfer Matters for GPU Computing

4.4.5 CPU-GPU数据流

下图是分离式架构的CPU-GPU的数据流程图:

1、将主存的处理数据复制到显存中。

2、CPU指令驱动GPU。

3、GPU中的每个运算单元并行处理。此步会从显存存取数据。

4、GPU将显存结果传回主存。

4.4.6 显像机制

  • 水平和垂直同步信号在早期的CRT显示器,电子枪从上到下逐行扫描,扫描完成后显示器就呈现一帧画面。然后电子枪回到初始位置进行下一次扫描。为了同步显示器的显示过程和系统的视频控制器,显示器会用硬件时钟产生一系列的定时信号。

当电子枪换行进行扫描时,显示器会发出一个水平同步信号(horizonal synchronization),简称 HSync

当一帧画面绘制完成后,电子枪回复到原位,准备画下一帧前,显示器会发出一个垂直同步信号(vertical synchronization),简称 VSync

显示器通常以固定频率进行刷新,这个刷新率就是 VSync 信号产生的频率。虽然现在的显示器基本都是液晶显示屏了,但其原理基本一致。

CPU将计算好显示内容提交至 GPU,GPU 渲染完成后将渲染结果存入帧缓冲区,视频控制器会按照 VSync 信号逐帧读取帧缓冲区的数据,经过数据转换后最终由显示器进行显示。

双缓冲

在单缓冲下,帧缓冲区的读取和刷新都都会有比较大的效率问题,经常会出现相互等待的情况,导致帧率下降。

为了解决效率问题,GPU 通常会引入两个缓冲区,即 双缓冲机制。在这种情况下,GPU 会预先渲染一帧放入一个缓冲区中,用于视频控制器的读取。当下一帧渲染完毕后,GPU 会直接把视频控制器的指针指向第二个缓冲器。


垂直同步

双缓冲虽然能解决效率问题,但会引入一个新的问题。当视频控制器还未读取完成时,即屏幕内容刚显示一半时,GPU 将新的一帧内容提交到帧缓冲区并把两个缓冲区进行交换后,视频控制器就会把新的一帧数据的下半段显示到屏幕上,造成画面撕裂现象:

  • 为了解决这个问题,GPU 通常有一个机制叫做垂直同步(简写也是V-Sync),当开启垂直同步后,GPU 会等待显示器的 VSync 信号发出后,才进行新的一帧渲染和缓冲区更新。这样能解决画面撕裂现象,也增加了画面流畅度,但需要消费更多的计算资源,也会带来部分延迟。

4.5 Shader运行机制

Shader代码也跟传统的C++等语言类似,需要将面向人类的高级语言(GLSL、HLSL、CGSL)通过编译器转成面向机器的二进制指令,二进制指令可转译成汇编代码,以便技术人员查阅和调试。

由高级语言编译成汇编指令的过程通常是在离线阶段执行,以减轻运行时的消耗。

在执行阶段,CPU端将shader二进制指令经由PCI-e推送到GPU端,GPU在执行代码时,会用Context将指令分成若干Channel推送到各个Core的存储空间。

对现代GPU而言,可编程的阶段越来越多,包含但不限于:顶点着色器(Vertex Shader)、曲面细分控制着色器(Tessellation Control Shader)、几何着色器(Geometry Shader)、像素/片元着色器(Fragment Shader)、计算着色器(Compute Shader)、…

这些着色器形成流水线式的并行化的渲染管线。下面将配合具体的例子说明。

下段是计算漫反射的经典代码:

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)
{
	float3 kd;
	kd = myTex.Sample(mySamp, uv);
	kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
	return float4(kd, 1.0);
}

经过编译后成为汇编代码:

<diffuseShader>:
sample r0, v4, t0, s0
mul    r3, v0, cb0[0]
madd   r3, v1, cb0[1], r3
madd   r3, v2, cb0[2], r3
clmp   r3, r3, l(0.0), l(1.0)
mul    o0, r0, r3
mul    o1, r1, r3
mul    o2, r2, r3
mov    o3, l(1.0)

在执行阶段,以上汇编代码会被GPU推送到执行上下文(Execution Context),然后ALU会逐条获取(Detch)、解码(Decode)汇编指令,并执行它们。

以上示例图只是单个ALU的执行情况,实际上,GPU有几十甚至上百个执行单元在同时执行shader指令:

对于SIMT架构的GPU,汇编指令有所不同,变成了SIMT特定指令代码:

<VEC8_diffuseShader>: 
VEC8_sample vec_r0, vec_v4, t0, vec_s0 
VEC8_mul    vec_r3, vec_v0, cb0[0] 
VEC8_madd   vec_r3, vec_v1, cb0[1], vec_r3 
VEC8_madd   vec_r3, vec_v2, cb0[2], vec_r3
VEC8_clmp   vec_r3, vec_r3, l(0.0), l(1.0) 
VEC8_mul    vec_o0, vec_r0, vec_r3 
VEC8_mul    vec_o1, vec_r1, vec_r3 
VEC8_mul    vec_o2, vec_r2, vec_r3 
VEC8_mov    o3, l(1.0)

并且Context以Core为单位组成共享的结构,同一个Core的多个ALU共享一组Context:

如果有多个Core,就会有更多的ALU同时参与shader计算,每个Core执行的数据是不一样的,可能是顶点、图元、像素等任何数据:

4.6 利用扩展例证

NV shader thread group提供了OpenGL的扩展,可以查询GPU线程、Core、SM、Warp等硬件相关的属性。如果要开启次此扩展,需要满足以下条件:

  • OpenGL 4.3+;
  • GLSL 4.3+;
  • 支持OpenGL 4.3+的NV显卡;

并且此扩展只在NV部分5代着色器内起作用:

This extension interacts with NV_gpu_program5
This extension interacts with NV_compute_program5
This extension interacts with NV_tessellation_program5

下面是具体的字段和代表的意义:

// 开启扩展
#extension GL_NV_shader_thread_group : require     (or enable)

WARP_SIZE_NV	// 单个线程束的线程数量
WARPS_PER_SM_NV	// 单个SM的线程束数量
SM_COUNT_NV		// SM数量

uniform uint  gl_WarpSizeNV;	// 单个线程束的线程数量
uniform uint  gl_WarpsPerSMNV;	// 单个SM的线程束数量
uniform uint  gl_SMCountNV;		// SM数量

in uint  gl_WarpIDNV;		// 当前线程束id
in uint  gl_SMIDNV;			// 当前线程束所在的SM id,取值[0, gl_SMCountNV-1]
in uint  gl_ThreadInWarpNV;	// 当前线程id,取值[0, gl_WarpSizeNV-1]

in uint  gl_ThreadEqMaskNV;	// 是否等于当前线程id的位域掩码。
in uint  gl_ThreadGeMaskNV;	// 是否大于等于当前线程id的位域掩码。
in uint  gl_ThreadGtMaskNV;	// 是否大于当前线程id的位域掩码。
in uint  gl_ThreadLeMaskNV;	// 是否小于等于当前线程id的位域掩码。
in uint  gl_ThreadLtMaskNV;	// 是否小于当前线程id的位域掩码。

in bool  gl_HelperThreadNV;	// 当前线程是否协助型线程。

上述所说的协助型线程gl_HelperThreadNV是指在处理2×2的像素块时,那些未被图元覆盖的像素着色器线程将被标记为gl_HelperThreadNV = true,它们的结果将被忽略,也不会被存储,但可辅助一些计算,如导数dFdxdFdy。为了防止理解有误,贴出原文:

The variable gl_HelperThreadNV specifies if the current thread is a helper thread. In implementations supporting this extension, fragment shader invocations may be arranged in SIMD thread groups of 2×2 fragments called “quad”. When a fragment shader instruction is executed on a quad, it’s possible that some fragments within the quad will execute the instruction even if they are not covered by the primitive. Those threads are called helper threads. Their outputs will be discarded and they will not execute global store functions, but the intermediate values they compute can still be used by thread group sharing functions or by fragment derivative functions like dFdx and dFdy.

利用以上字段,可以编写特殊shader代码转成颜色信息,以便可视化窥探GPU的工作机制和流程。

利用NV扩展字段,可视化了顶点着色器、像素着色器的SM、Warp id,为我们查探GPU的工作机制和流程提供了途径。

下面正式进入验证阶段,将以Geforce RTX 2060作为验证对象,具体信息如下:

操作系统: Windows 10 Pro, 64-bit

DirectX 版本: 12.0
GPU 处理器: GeForce RTX 2060
驱动程序版本: 417.71
Driver Type: Standard
Direct3D API 版本: 12
Direct3D 功能级别:12_1

CUDA 核心: 1920
核心时钟: 1710 MHz
内存数据速率: 14.00 Gbps
内存接口: 192-位
内存带宽: 336.05 GB/秒
全部可用的图形内存:22494MB
专用视频内存: 6144 MB GDDR6
系统视频内存: 0MB
共享系统内存: 16350MB
视频 BIOS 版本: 90.06.3F.00.73
IRQ: Not used
总线: PCI Express x16 Gen3

首先在应用程序创建包含两个三角形的顶点数据:

// set up vertex data (and buffer(s)) and configure vertex attributes
const float HalfSize = 1.0f;
float vertices[] = {
	-HalfSize, -HalfSize, 0.0f, // left bottom
	HalfSize, -HalfSize, 0.0f,  // right bottom
	-HalfSize,  HalfSize, 0.0f, // top left

	-HalfSize,  HalfSize, 0.0f, // top left
	HalfSize, -HalfSize, 0.0f,  // right bottom
	HalfSize,  HalfSize, 0.0f,  // top right
}; 

渲染采用的顶点着色器非常简单:

#version 430 core

layout (location = 0) in vec3 aPos;

void main()
{
	gl_Position = vec4(aPos, 1.0f);
}

片元着色器也是寥寥数行:

#version 430 core

out vec4 FragColor;

void main()
{
	FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
}

绘制出来的原始画面如下:

紧接着,修改片元着色器,加入扩展所需的代码,并修改颜色计算:

#version 430 core
#extension GL_NV_shader_thread_group : require

uniform uint  gl_WarpSizeNV;	// 单个线程束的线程数量
uniform uint  gl_WarpsPerSMNV;	// 单个SM的线程束数量
uniform uint  gl_SMCountNV;		// SM数量

in uint  gl_WarpIDNV;		// 当前线程束id
in uint  gl_SMIDNV;			// 当前线程所在的SM id,取值[0, gl_SMCountNV-1]
in uint  gl_ThreadInWarpNV;	// 当前线程id,取值[0, gl_WarpSizeNV-1]

out vec4 FragColor;

void main()
{
	// SM id
	float lightness = gl_SMIDNV / gl_SMCountNV;
	FragColor = vec4(lightness);
}

由上面的代码渲染的画面如下:

从上面可分析出一些信息:

  • 画面共有32个亮度色阶,也就是Geforce RTX 2060有32个SM。
  • 单个SM每次渲染16×16为单位的像素块,也就是每个SM有256个Core。
  • SM之间不是顺序分配像素块,而是无序分配。
  • 不同三角形的接缝处出现断层,说明同一个像素块如果分属不同的三角形,就会分配到不同的SM进行处理。由此推断,相同面积的区域,如果所属的三角形越多,就会导致分配给SM的次数越多,消耗的渲染性能也越多

接着修改片元着色器的颜色计算代码以显示Warp id:

// warp id
float lightness = gl_WarpIDNV / gl_WarpsPerSMNV;
FragColor = vec4(lightness);

得到如下画面:

由此可得出一些信息或推论:

  • 画面共有32个亮度色阶,也就是每个SM有32个Warp,每个Warp有8个Core。
  • 每个色块像素是4×8,由于每个Warp有8个Core,由此推断每个Core单次要处理2×2的最小单元像素块。
  • 也是无序分配像素块。
  • 三角形接缝处出现断层,同SM的推断一致。

再修改片元着色器的颜色计算代码以显示线程id:

// thread id
float lightness = gl_ThreadInWarpNV / gl_WarpSizeNV;
FragColor = vec4(lightness);

得到如下画面:

为了方便分析,用Photoshop对中间局部放大10倍,得到以下画面:

结合上面两幅图,也可以得出一些结论:

  • 相较SM、线程束,线程分布图比较规律。说明同一个Warp的线程分布是规律的。
  • 三角形接缝处出现紊乱,说明是不同的Warp造成了不同的线程。
  • 画面有32个色阶,说明单个Warp有32个线程。
  • 每个像素独占一个亮度色阶,与周边相邻像素都不同,说明每个线程只处理一个像素。

再次说明,以上画面和结论是基于Geforce RTX 2060,不同型号的GPU可能会不一样,得到的结果和推论也会有所不同。

更多NV扩展可参见OpenGL官网:NV extensions

五、总结

5.1 CPU vs GPU

CPU和GPU的差异可以描述在下面表格中:

CPUGPU
延迟容忍度
并行目标任务(Task)数据(Data)
核心架构多线程核心SIMT核心
线程数量级别1010000
吞吐量
缓存需求量
线程独立性

它们之间的差异(缓存、核心数量、内存、线程数等)可用下图展示出来:

5.2 渲染优化建议

由上章的分析,可以很容易给出渲染优化建议:

  • 减少CPU和GPU的数据交换:
    • 合批(Batch)
    • 减少顶点数、三角形数
    • 视锥裁剪
      • BVH
      • Portal
      • BSP
      • OSP
    • 避免每帧提交Buffer数据
      • CPU版的粒子、动画会每帧修改、提交数据,可移至GPU端。
    • 减少渲染状态设置和查询
      • 例如:glGetUniformLocation会从GPU内存查询状态,耗费很多时间周期。
      • 避免每帧设置、查询渲染状态,可在初始化时缓存状态。
    • 启用GPU Instance
    • 开启LOD
    • 避免从显存读数据
  • 减少过绘制:
    • 避免Tex Kill操作
    • 避免Alpha Test
    • 避免Alpha Blend
    • 开启深度测试
      • Early-Z
      • 层次Z缓冲(Hierarchical Z-Buffering,HZB)
    • 开启裁剪:
      • 背面裁剪
      • 遮挡裁剪
      • 视口裁剪
      • 剪切矩形(scissor rectangle)
    • 控制物体数量
      • 粒子数量多且面积小,由于像素块机制,会加剧过绘制情况
      • 植物、沙石、毛发等也如此
  • Shader优化:
    • 避免if、switch分支语句
    • 避免for循环语句,特别是循环次数可变的
    • 减少纹理采样次数
    • 禁用clipdiscard操作
    • 减少复杂数学函数调用

更多优化技巧可阅读:

5.3 GPU的未来

从章节[2.2 GPU历史](#2.2 GPU历史)可以得出一些结论,也可以推测GPU发展的趋势:

  • 硬件升级。更多运算单元,更多存储空间,更高并发,更高带宽,更低延时。。。
  • Tile-Based Rendering的集成。基于瓦片的渲染可以一定程度降低带宽和提升光照计算效率,目前部分移动端及桌面的GPU已经引入这个技术,未来将有望成为常态。
  • 3D内存技术。目前大多数传统的内存是2D的,3D内存则不同,在物理结构上是3D的,类似立方体结构,集成于芯片内。可获得几倍的访问速度和效能比。
  • GPU愈加可编程化。GPU天生是并行且相对固定的,未来将会开放越来越多的shader可供编程,而CPU刚好相反,将往并行化发展。也就是说,未来的GPU越来越像CPU,而CPU越来越像GPU。难道它们应验了古语:合久必分,分久必合么?
  • 实时光照追踪的普及。基于Turing架构的GPU已经加入大量RT Core、HVB、AI降噪等技术,Hybrid Rendering Pipeline就是此架构的光线追踪渲染管线,能够同时结合光栅化器、RT Core、Compute Core执行混合渲染:

Hybrid Rendering Pipeline相当于光线追踪渲染管线和光栅化渲染管线的合体:

  • 数据并发提升、深度神经网络、GPU计算单元等普及及提升
  • AI降噪和AI抗锯齿。AI降噪已经在部分RTX系列的光线追踪版本得到应用,而AI抗锯齿(Super Res)可用于超高分辨率的视频图像抗锯齿:
  • 基于任务和网格着色器的渲染管线。基于任务和网格着色器的渲染管线(Graphics Pipeline with Task and Mesh Shaders)与传统的光栅化渲染光线有着很大的差异,它以线程组(Thread Group)、任务着色器(Task shader)和网格着色器(Mesh shader)为基础,形成一种全新的渲染管线:
  • 关于此技术的更多详情可阅读:NVIDIA Turing Architecture Whitepaper
  • 可变速率着色(Variable Rate Shading)。可变利率着色技术可判断画面区域的重要性(或由应用程序指定),然后根据画面区域的重要性程度采用不同的着色分辨率精度,可以显著降低功耗,提高着色效率。

5.4 结语

本文系统地讲解了GPU的历史、发展、工作流程,以及部分过程的细化说明和用到的各种技术,我们从中可以看到GPU架构的动机、机制、瓶颈,以及未来的发展。

希望看完本文,大家能很好地回答导言提出的问题:1.3 带着问题阅读。如果不能全部回答,也没关系,回头看相关章节,总能找到答案。

如果想更深入地了解GPU的设计细节、实现细节,可阅读GPU厂商定期发布的白皮书和各大高校、机构发布的论文。推荐一个GPU解说视频:A trip through the Graphics Pipeline 2011: Index,虽然是多年前的视频,但比较系统、全面地讲解了GPU的机制和技术。

特别说明

  • 感谢所有参考文献的作者们!
  • 原创文章,未经许可,禁止转载!

参考文献

RenderDoc调试Shader(转)

原文地址:https://zhuanlan.zhihu.com/p/74622572

工欲善其事必先利其器,作为一个逻辑开发者,刚开始学习unity shader的时候,最头痛的我就觉得就是shader的调试吧,总是想单步调试下看看具体的数值是怎么变化的,尤其是显示效果不对的时候。虽然现在我认为当你习惯用假色彩图像调试之后,确实单步debug没有太大的必要,但是今天还是总结一下吧,我觉得利用工具是非常有利于理解渲染流程的。

先说下最常用的工具就是visual studio了,unity 官方的教程在这里,这里我就不多说了。

https://link.zhihu.com/?target=https%3A//docs.unity3d.com/Manual/SL-DebuggingD3D11ShadersWithVS.html

这里只说他的缺点,就是每次都要用vs 启动unity 编辑器,比较繁琐和耗时,而且装的东西也比较多。那么接下来就说说我们的主角RenderDoc (https://link.zhihu.com/?target=https%3A//renderdoc.org/docs/index.html) ,当我第一次发现这个工具的时候,非常兴奋,觉得终于有一个符合我的编程习惯的工具了。接下来就简单介绍一下吧。RenderDoc是一个开源的可以调试shader的工具,我主要讲一下和unityshader 结合使用的部分。

  1. 首先在官网下载他的release版本,我现在用的是V1.4, 下载地址是https://link.zhihu.com/?target=https%3A//renderdoc.org/
  2. 也可以去github 下载他的源码编译最新的版本,github地址是 (https://link.zhihu.com/?target=https%3A//github.com/baldurk/renderdoc/tree/v1.4
  3. 下载安装RenderDoc后,打开unity ,可以在Scene或者Game视图右键,弹出LoadRenderDoc菜单,然后点击加载就可以了

3.加载之后,会在视图上出现一个renderdoc的Logo,如下图

4.点击这个图标,会调用起RenderDoc 并且自动截图

6.如果你的窗口现在没有打开TextureViewer MeshViewer PipeLineState的话,你可以通过window 菜单项打开他们,方便我们先运行效果。至于这些窗口的说明和介绍,大家可以去看官方文档。

7.接下来就是调试我们的shader了 ,这时候要注意的一个点就是我们要在我们的shader里面加上一句宏

#pragma enable_d3d11_debug_symbols

来保证unity 不会优化掉我们的调试信息,把他放到我们的CGPROGRAM 代码块里面,记得renderdoc截图的时候,保证这句代码已经在shader里面的,之前没有加的话,记得重新走一次renderdoc截图啊,还有截图的时候最好保证unity的其他窗口是关闭的,保证只有game视图一个窗口,不然截图的内容可能是错误的


8.OK,当我们看到事件列表的时候,我们选择我们要调试的一个事件

大家一定注意选择的事件,不要选择错了,不然选择的是其他事件,调用的不是你想要调试的shader,那么你看到调试代码就是dxbc格式的,不是我们想要的HLSL的格式,我们选中事件之后,在mesh Viewer面板可以调试vertex shader,在texture viewer可以调试frag shader .

在mesh viewer 面板就是 选中一个点,然后右键,选择debug this vertex

就会打开调试面板

然后我们选择Debug in HlSl 就可以切换到Hlsl语法代码,进行愉快的调试了

点击debug in assembly 可以来回切换面板

9.如何调试frag shader呢,跟上面差不多,打开textureview 面板

右键选中你要调试的片元,然后点击右下角的debug按钮即可。

下面的watch 面板就是监视面板,你可以监察你的变量。也可以打断点一步一步调试,用法和vs差不多。

10.你也可以在pipleline state面板来看各个流程,可以实时编辑你的shader,来调整效果

点击edit

修改代码后,点击F5键刷新就可以在textureviewer看效果

好了,简单的介绍就到这里,总而言之,用renderdoc还是很方便的,解决了心头大患,具体更详细的介绍和使用,大家可以去官网在去了解下。