c#中@的3种作用[转]

1.忽略转义字符

例如

string fileName = "D:\\文本文件\\text.txt";

使用@后

string fileName = @"D:\文本文件\text.txt";

2.让字符串跨行

例如

string strSQL = "SELECT * FROM HumanResources.Employee AS e"
+ " INNER JOIN Person.Contact AS c"
+ " ON e.ContactID = c.ContactID"
+ " ORDER BY c.LastName";

使用@后

string strSQL = @"SELECT * FROM HumanResources.Employee AS e INNER JOIN Person.Contact AS c ON e.ContactID = c.ContactID ORDER BY c.LastName";

 

3.在标识符中的用法

C#是不允许关键字作为标识符(类名、变量名、方法名、表空间名等)使用的,但如果加上@之后就可以了
例如

public static void @static(int @int)
{
if (@int > 0)
{
System.Console.WriteLine("Positive Integer");
}
else if (@int == 0)
{
System.Console.WriteLine("Zero");
}
else
{
System.Console.WriteLine("Negative Integer");
}
}

 

引用参考:http://www.2cto.com/kf/201009/74766.html

关于C# 中的Attribute 特性[转]

Attribute与Property 的翻译区别

Attribute 一般译作“特性”,Property 仍然译为“属性”。

Attribute 是什么

Attribute 是一种可由用户自由定义的修饰符(Modifier),可以用来修饰各种需要被修饰的目标。

简单的说,Attribute就是一种“附着物” —— 就像牡蛎吸附在船底或礁石上一样。

这些附着物的作用是为它们的附着体追加上一些额外的信息(这些信息就保存在附着物的体内)—— 比如“这个类是我写的”或者“这个函数以前出过问题”等等。

Attribute 的作用

特性Attribute 的作用是添加元数据。
元数据可以被工具支持,比如:编译器用元数据来辅助编译,调试器用元数据来调试程序。

Attribute 与注释的区别

注释是对程序源代码的一种说明,主要目的是给人看的,在程序被编译的时候会被编译器所丢弃,因此,它丝毫不会影响到程序的执行。
而Attribute是程序代码的一部分,不但不会被编译器丢弃,而且还会被编译器编译进程序集(Assembly)的元数据(Metadata)里,在程序运行的时候,你随时可以从元数据里提取出这些附加信息来决策程序的运行。
举例:

在项目中,有一个类由两个程序员(小张和小李)共同维护。这个类起一个“工具包”(Utilities)的作用(就像.NET Framework中的Math类一样),里面含了几十个静态方法。而这些静态方法,一半是小张写的、一半是小李写的;在项目的测试中,有一些静态方法曾经出过bug,后来又被修正。这样,我们就可以把这些方面划分成这样几类:

我们分类的目的主要是在测试的时候可以按不同的类别进行测试、获取不同的效果。比如:统计两个人的工作量或者对曾经出过bug的方法进行回归测试。

如果不使用Attribute,为了区分这四类静态方法,我们只能通过注释来说明,但这种方式会有很多弊端;

如果使用Attribute,区分这四类静态方法将会变得简单多了。示例代码如下:

#define Buged
//C# 的宏定义必须出现在所有代码之前。当前只让 Buged 宏有效。
using System;
using System.Diagnostics; // 注意:这是为了使用包含在此名称空间中的ConditionalAttribute特性
namespace Con_Attribute
{
    class Program
    {
        static void Main(string[] args)
        {
            // 虽然方法都被调用了,但只有符合条件的才会被执行!
            ToolKit.FunA();
            ToolKit.FunB();
            ToolKit.FunC();
            ToolKit.FunD();
        }
    }
    class ToolKit
    {
        [ConditionalAttribute("Li")] // Attribute名称的长记法
        [ConditionalAttribute("Buged")]
        public static void FunA()
        {
            Console.WriteLine("Created By Li, Buged.");
        }
        [Conditional("Li")] // Attribute名称的短记法
        [Conditional("NoBug")]
        public static void FunB()
        {
            Console.WriteLine("Created By Li, NoBug.");
        }
        [ConditionalAttribute("Zhang")]// Attribute名称的长记法
        [ConditionalAttribute("Buged")]
        public static void FunC()
        {
            Console.WriteLine("Created By Zhang, Buged.");
        }
        [Conditional("Zhang")] // Attribute名称的短记法
        [Conditional("NoBug")]
        public static void FunD()
        {
            Console.WriteLine("Created By Zhang, NoBug.");
        }
    }
}

 

运行结果如下:

注意:运行结果是由代码中“#define Buged ”这个宏定义所决定。

分析:

1.  在本例中,我们使用了ConditionalAttribute 这个Attribute,它被包含在 System.Diagnostics 名称空间中。显然,它多半时间是用来做程序调试与诊断的。

2.  与ConditionalAttribute 相关的是一组C# 宏,它们看起来与C语言的宏别无二致,位置必须出现在所有C# 代码之前。顾名思义,ConditionalAttribute 是用来判断条件的,凡被ConditionalAttribute (或Conditional)“附着”了的方法,只有满足了条件才会执行。

3.  Attribute 就像船底上可以附着很多牡蛎一样,一个方法上也可以附着多个ConditionalAttribute 的实例。把Attribute 附着在目标上的书写格式很简单,使用方括号把Attribute 括起来,然后紧接着写Attribute 的附着体就行了。当多个Attribute 附着在同一个目标上时,就把这些Attribute 的方括号一个挨一个地书写(或者在一对方括号中书写多个Attribute),而且不必在乎它们的顺序。

4.  在使用Attribute 的时候,有“长记法”和“短记法”两种,请君自便。

由上面的第3 条和第4 条我们可以推出,以下四种Attribute 的使用方式是完全等价:

// 长记法
[ConditionalAttribute("LI")]
[ConditionalAttribute("NoBug")]
public static void Fun()
{ Console.WriteLine("Created By Li, NoBug."); }
// 短记法
[Conditional("LI")]
[Conditional("NoBug")]
public static void Fun()
{ Console.WriteLine("Created By Li, NoBug."); }
// 换序
[Conditional("NoBug")]
[Conditional("LI")]
public static void Fun()
{ Console.WriteLine("Created By Li, NoBug."); }
Attribute 的本质

从上面的代码中,我们可以看到Attribute 似乎总跟public、static 这些关键字(Keyword)出现在一起。

莫非使用了Attribute 就相当于定义了新的修饰符(Modifier)吗?让我们来一窥究竟!

示例代码如下:

#define XG //C# 的宏定义必须出现在所有代码之前
using System;
using System.Diagnostics; // 注意:这是为了使用包含在此名称空间中的ConditionalAttribute 特性
namespace Con_Attribute
{
    class Program2
    {
        [Conditional("XG")]
        static void Fun()
        {
            Console.ForegroundColor = ConsoleColor.Yellow;
            Console.WriteLine("http://xugang.cnblogs.com");
        }
        static void Main(

 

使用微软的中间语言反编译器查看 MSIL 中间语言中TargetMethod:void() 方法的代码,截图如下:

可以看出:Attribute 本质上就是一个类,它在所附着的目标对象上最终实例化。

仔细观察中间语言(MSIL)的代码之后,那些被C# 语言所掩盖的事实,在中间语言(MSIL)中就变得赤身裸体了。而Attribute 也变得毫无秘密!

图中红色所指的是Fun 方法及其修饰符,但Attribute 并没有出现在这里。

图中蓝色所指的是在调用mscorlib.dll 程序集中System.Diagnostics 名称空间中ConditionalAttribute 类的构造函数。

可见,Attribute 并不是修饰符,而是一个有着独特实例化形式的类!

Attribute 实例化有什么独特之处呢?

1.  它的实例是使用.custom 声明的。查看中间语言语法,你会发现.custom 是专门用来声明自定义特性的。

2.  声明Attribute 的位置是在函数体内的真正代码(IL_0000  至IL_0014 )之前。

这就从“底层”证明了Attribute不是什么“修饰符”,而是一种实例化方式比较特殊的类。

元数据的作用

MSIL 中间语言中,程序集的元数据(Metadata)记录了这个程序集里有多少个namespace、多少个类、类里有什么成员、成员的访问级别是什么。而且,元数据是以文本(也就是Unicode 字符)形式存在的,使用.NET的反射(Reflection)技术就能把它们读取出来,并形成MSIL 中的树状图、VS 里的Object  Browser 视图,以及自动代码提示功能,这些都是元数据与反射技术结合的产物。一个程序集(.EXE或.DLL)能够使用包含在自己体内的元数据来完整地说明自己,而不必像C/C++ 那样带着一大捆头文件,这就叫作“自包含性”或“自描述性”。

Attribute 的实例化

就像牡蛎天生就要吸附在礁石或船底上一样,Attribute 的实例一构造出来就必需“粘”在一个什么目标上。

Attribute 实例化的语法是相当怪异的,主要体现在以下三点:

1.  不使用new 操作符来产生实例,而是使用在方括号里调用构造函数来产生实例。

2.  方括号必需紧挨着放置在被附着目标的前面。

3.  因为方括号里空间有限,不能像使用new 那样先构造对象,然后再给对象的属性(Property)赋值。

因此,对Attribute 实例的属性赋值也在构造函数的圆括号里。

并且,Attribute 实例化时尤其要注意的是:

1.  构造函数的参数是一定要写。有几个就得写几个,因为你不写的话实例就无法构造出来。

2.  构造函数参数的顺序不能错。调用任何函数都不能改变参数的顺序,除非它有相应的重载(Overload)。因为这个顺序是固定的,有些书里称其为“定位参数”(意即“个数和位置固定的参数”)。

3. 对Attribute 实例的属性的赋值可有可无。反正它会有一个默认值,并且属性赋值的顺序不受限制。有些书里称属性赋值的参数为“具名参数”。

自定义Attribute 实例

在此,我们不使用.NET  Framework 中的各种Attribute 系统特性,而是从头自定义一个全新的Attribute 类。

示例代码如下:

using System;
namespace Con_Attribute
{
    class Program3
    {
        static void Main(string[] args)
        {
            //使用反射读取Attribute
            System.Reflection.MemberInfo info = typeof(Student); //通过反射得到Student类的信息
            Hobby hobbyAttr = (Hobby)Attribute.GetCustomAttribute(info, typeof(Hobby));
            if (hobbyAttr != null)
            {
                Console.WriteLine("类名:{0}", info.Name);
                Console.WriteLine("兴趣类型:{0}", hobbyAttr.Type);
                Console.WriteLine("兴趣指数:{0}", hobbyAttr.Level);
            }
        }
    }
    //注意:"Sports" 是给构造函数的赋值, Level = 5 是给属性的赋值。
    [Hobby("Sports", Level = 5)]
    class Student
    {
        [Hobby("Football")]
        public string profession;
        public string Profession
        {
            get { return profession; }
            set { profession = value; }
        }
    }
    //建议取名:HobbyAttribute
    class Hobby : Attribute // 必须以System.Attribute 类为基类
    {
        // 参数值为null的string 危险,所以必需在构造函数中赋值
        public Hobby(string _type) // 定位参数
        {
            this.type = _type;
        }
        //兴趣类型
        private string type;
        public string Type
        {
            get { return type; }
            set { type = value; }
        }
        //兴趣指数
        private int level;
        public int Level
        {
            get { return level; }
            set { level = value; }
        }
    }
}

为了不让代码太长,上面的示例中Hobby 类的构造函数只有一个参数,所以对“定位参数”体现的还不够淋漓尽致。大家可以为Hobby 类再添加几个属性,并在构造函数里多设置几个参数,体验一下Attribute 实例化时对参数个数及参数位置的敏感性。

能被Attribute 所附着的目标

Attribute 可以将自己的实例附着在什么目标上呢?这个问题的答案隐藏在AttributeTargets 这个枚举类型里。

这个类型的可取值集合为:

All                                         Assembly                      Class                              Constructor
Delegate                           Enum                               Event                              Field
GenericParameter         Interface                         Method                           Module
Parameter                         Property                         ReturnValue                Struct
一共是16 个可取值。上面这张表是按字母顺序排列的,并不代表它们真实值的排列顺序。

使用下面这个小程序可以查看每个枚举值对应的整数值,示例代码如下:

using System;
namespace Con_Attribute
{
    class Program4
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Assembly\t\t\t{0}", Convert.ToInt32(AttributeTargets.Assembly));
            Console.WriteLine("Module\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Module));
            Console.WriteLine("Class\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Class));
            Console.WriteLine("Struct\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Struct));
            Console.WriteLine("Enum\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Enum));
            Console.WriteLine("Constructor\t\t\t{0}", Convert.ToInt32(AttributeTargets.Constructor));
            Console.WriteLine("Method\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Method));
            Console.WriteLine("Property\t\t\t{0}", Convert.ToInt32(AttributeTargets.Property));
            Console.WriteLine("Field\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Field));
            Console.WriteLine("Event\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.Event));
            Console.WriteLine("Interface\t\t\t{0}", Convert.ToInt32(AttributeTargets.Interface));
            Console.WriteLine("Parameter\t\t\t{0}", Convert.ToInt32(AttributeTargets.Parameter));
            Console.WriteLine("Delegate\t\t\t{0}", Convert.ToInt32(AttributeTargets.Delegate));
            Console.WriteLine("ReturnValue\t\t\t{0}", Convert.ToInt32(AttributeTargets.ReturnValue));
            Console.WriteLine("GenericParameter\t\t{0}", Convert.ToInt32(AttributeTargets.GenericParameter));
            Console.WriteLine("All\t\t\t\t{0}", Convert.ToInt32(AttributeTargets.All));
            Console.WriteLine("\n");
        }
    }
}

 

结果显示如下:

AttributeTargets 使用了枚举值的另一种用法 —— 标识位。
除了All 的值之外,每个值的二进制形式中只有一位是“1”,其余位全是“0”。
如果我们的Attribute 要求既能附着在类上,又能附着在类的方法上。就可以使用C# 中的操作符“|”(也就是按位求“或”)。有了它,我们只需要将代码书写如下:
AttributeTargets.Class | AttributeTargets.Method
因为这两个枚举值的标识位(也就是那个唯一的“1”)是错开的,所以只需要按位求或就解决问题了。
这样,你就能理解:为什么AttributeTargets.All 的值是32767 了。
默认情况下,当我们声明并定义一个新的Attribute 类时,它的可附着目标是AttributeTargets.All。
大多数情况下,Attribut

[AttributeUsage(AttributeTargets.Class, AttributeTargets.Field)]
class Hobby : Attribute // 必须以System.Attribute 类为基类
{
    // Hobby 类的具体实现
}

这里是使用Attribute的实例(AttributeUsage)附着在Attribute 类(Hobby)上。Attribute 的本质就是类,而AttributeUsage 又说明Hobby 类可以附着在哪些类型上。
附加问题:
1. 如果一个Attribute 类附着在了某个类上,那么这个Attribute 类会不会随着继承关系也附着在派生类上呢?
2. 可不可以像多个牡蛎附着在同一艘船上那样,让一个Attribute 类的多个实例附着在同一个目标上呢?
答案:可以。代码如下:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Field, Inherited = false, AllowMultiple = true)]
class Hobby : System.Attribute
{
    // Hobby 类的具体实现
}

AttributeUsage 这个专门用来修饰Attribute 的Attribute ,除了可以控制修饰目标外,还能决定被它修饰的Attribute 是否可以随宿主“遗传”,以及是否可以使用多个实例来修饰同一个目标!

那修饰ConditionalAttribute 的AttributeUsage 又会是什么样子呢?(答案在MSDN中)

参考来源:

Attribute 在.NET 编程的应用

深入浅出Attribute[上] —— Attribute 初体验

深入浅出Attribute[中] —— Attribute本质论 

示例代码

 

原文地址:https://kb.cnblogs.com/page/87531/

Cg Standard Library Functions

Appendix E. Cg Standard Library Functions

Cg provides a set of built-in functions and predefined structures with binding semantics to simplify GPU programming. These functions are similar in spirit to the C standard library, offering a convenient set of common functions. In many cases, the functions map to a single native GPU instruction, so they are executed very quickly. Of the functions that map to multiple native GPU instructions, you may expect the most useful to become more efficient in the near future.

Although you can write your own versions of specific functions for performance or precision reasons, it is generally wiser to use the Cg Standard Library functions when possible. The Standard Library functions will continue to be optimized for future GPUs; a program written today using these functions will automatically be optimized for the latest architectures at compile time. Additionally, the Standard Library provides a convenient unified interface for both vertex and fragment programs.

This appendix describes the contents of the Cg Standard Library, and is divided into the following five sections:

  • “Mathematical Functions”
  • “Geometric Functions”
  • “Texture Map Functions”
  • “Derivative Functions”
  • “Debugging Function”

Where appropriate, functions are overloaded to support scalar and vector variants when the input and output types are the same.

E.1 Mathematical Functions

Table E-1 lists the mathematical functions that the Cg Standard Library provides. The table includes functions useful for trigonometry, exponentiation, rounding, and vector and matrix manipulations, among others. All functions work on scalars and vectors of all sizes, except where noted.

Table E-1. Mathematical Functions

Function Description
abs( x ) Absolute value of x .
acos( x ) Arccosine of x in range [0, p], x in [–1, 1].
all( x ) Returns true if every component of x is not equal to 0.

Returns false otherwise.

any( x ) Returns true if any component of x is not equal to 0.

Returns false otherwise.

asin( x ) Arcsine of x in range [–p/2, p/2]; x should be in [–1, 1].
atan( x ) Arctangent of x in range [–p/2, p/2].
atan2( y , x ) Arctangent of y / x in range [–p, p].
ceil( x ) Smallest integer not less than x .
clamp( x , a , b ) x clamped to the range [ a , b ] as follows:

  • Returns a if x is less than a .
  • Returns b if x is greater than b .
  • Returns x otherwise.
cos( x ) Cosine of x .
cosh( x ) Hyperbolic cosine of x .
cross( A , B ) Cross product of vectors A and B ;

A and B must be three-component vectors.

degrees( x ) Radian-to-degree conversion.
determinant( M ) Determinant of matrix M .
dot( A , B ) Dot product of vectors A and B .
exp( x ) Exponential function e x .
exp2( x ) Exponential function 2 x .
floor( x ) Largest integer not greater than x .
fmod( x , y ) Remainder of x / y , with the same sign as x .

If y is 0, the result is implementation-defined.

frac( x ) Fractional part of x .
frexp( x , out exp ) Splits x into a normalized fraction in the interval [½, 1), which is returned, and a power of 2, which is stored in exp .

If x is 0, both parts of the result are 0.

isfinite( x ) Returns true if x is finite.
isinf( x ) Returns true if x is infinite.
isnan( x ) Returns true if x is NaN (Not a Number).
ldexp( x , n ) x x 2 n .
lerp( a , b , f ) Linear interpolation:

(1 – f )* a + b * f

where a and b are matching vector or scalar types. f can be either a scalar or a vector of the same type as a and b .

lit( NdotL , NdotH , m ) Computes lighting coefficients for ambient, diffuse, and specular light contributions.

Expects the NdotL parameter to contain N  L and the NdotH parameter to contain N  H .

Returns a four-component vector as follows:

  • The x component of the result vector contains the ambient coefficient, which is always 1.0.
  • The y component contains the diffuse coefficient, which is 0 if ( N  L ) < 0; otherwise ( N  L ).
  • The z component contains the specular coefficient, which is 0 if either ( N  L ) < 0 or ( N  H ) < 0; ( N  H ) m otherwise.
  • The w component is 1.0.

There is no vectorized version of this function.

log( x ) Natural logarithm ln( x ) ; x must be greater than 0.
log2( x ) Base 2 logarithm of x ; x must be greater than 0.
log10( x ) Base 10 logarithm of x ; x must be greater than 0.
max( a , b ) Maximum of a and b .
min( a , b ) Minimum of a and b .
modf( x , out ip ) Splits x into integral and fractional parts, each with the same sign as x .

Stores the integral part in ip and returns the fractional part.

mul( M , N ) Matrix product of matrix M and matrix N , as shown below:

304equ01.jpg

If M has size A x B , and N has size B x C , returns a matrix of size A x C .

mul( M , v ) Product of matrix M and column vector v , as shown below:

305equ01.jpg

If M is an A x B matrix and v is a B x 1 vector, returns an A x 1 vector.

mul( v , M ) Product of row vector v and matrix M , as shown below:

305equ02.jpg

If v is a 1 x A vector and M is an A x B matrix, returns a 1 x B vector.

noise( x ) Either a one-, two-, or three-dimensional noise function, depending on the type of its argument. The returned value is between 0 and 1, and is always the same for a given input value.
pow( x , y ) xy .
radians( x ) Degree-to-radian conversion.
round( x ) Closest integer to x .
rsqrt( x ) Reciprocal square root of x ; x must be greater than 0.
saturate( x ) Clamps x to the [0, 1] range.
sign( x ) 1 if x > 0; –1 if x < 0; 0 otherwise.
sin( x ) Sine of x .
sincos(float x , out s , out c ) s is set to the sine of x , and c is set to the cosine of x .

If both sin( x ) and cos( x ) are needed, this function is more efficient than calculating each individually.

sinh( x ) Hyperbolic sine of x .
smoothstep( min , max , x ) For values of x between min and max , returns a smoothly varying value that ranges from 0 at x = min to 1 at x = max .

x is clamped to the range [ min , max ] and then the interpolation formula is evaluated:

–2*(( x  min )/( max  min ))3 +

3*(( x  min )/( max  min ))2

step( a , x ) 0 if x < a ;

1 if x >= a .

sqrt( x ) Square root of x ;

x must be greater than 0.

tan( x ) Tangent of x .
tanh( x ) Hyperbolic tangent of x .
transpose( M ) Matrix transpose of matrix M .

If M is an A x B matrix, the transpose of M is a B x A matrix whose first column is the first row of M , whose second column is the second row of M , whose third column is the third row of M , and so on.

E.2 Geometric Functions

Table E-2 presents the geometric functions that are provided in the Cg Standard Library.

Table E-2. Geometric Functions

Function Description
distance( pt1 , pt2 ) Euclidean distance between points pt1 and pt2 .
faceforward( N , I , Ng ) N if dot( Ng , I ) < 0; - N otherwise.
length( v ) Euclidean length of a vector.
normalize( v ) Returns a vector of length 1 that points in the same direction as vector v .
reflect( I , N ) Computes reflection vector from entering ray direction I and surface normal N .

Valid only for three-component vectors.

refract( I , N , eta ) Given entering ray direction I , surface normal N , and relative index of refraction eta , computes refraction vector.

If the angle between I and N is too large for a given eta , returns (0, 0, 0).

Valid only for three-component vectors.

E.3 Texture Map Functions

Table E-3 presents the texture map functions that are provided in the Cg Standard Library. Currently, these texture functions are fully supported by the ps_2_0 , ps_2_x , arbfp1 , and fp30 profiles (though only OpenGL profiles support the samplerRECT functions). They will also be supported by all future advanced fragment profiles with texture-mapping capabilities. All of the functions listed in Table E-3 return a float4 value.

Table E-3. Texture Map Functions

Function Description
tex1D(sampler1D tex , float s ) 1D nonprojective texture query
tex1D(sampler1D tex , float s , float dsdx , float dsdy ) 1D nonprojective texture query with derivatives
tex1D(sampler1D tex , float2 sz ) 1D nonprojective depth compare texture query
tex1D(sampler1D tex , float2 sz , float dsdx , float dsdy ) 1D nonprojective depth compare texture query with derivatives
tex1Dproj(sampler1D tex , float2 sq ) 1D projective texture query
tex1Dproj(sampler1D tex , float3 szq ) 1D projective depth compare texture query
tex2D(sampler2D tex , float2 s ) 2D nonprojective texture query
tex2D(sampler2D tex , float2 s , float2 dsdx , float2 dsdy ) 2D nonprojective texture query with derivatives
tex2D(sampler2D tex , float3 sz ) 2D nonprojective depth compare texture query
tex2D(sampler2D tex , float3 sz , float2 dsdx , float2 dsdy ) 2D nonprojective depth compare texture query with derivatives
tex2Dproj(sampler2D tex , float3 sq ) 2D projective texture query
tex2Dproj(sampler2D tex , float4 szq ) 2D projective depth compare texture query
texRECT(samplerRECT tex , float2 s ) 2D nonprojective texture rectangle texture query (OpenGL only)
texRECT(samplerRECT tex , float2 s , float2 dsdx , float2 dsdy ) 2D nonprojective texture rectangle texture query with derivatives (OpenGL only)
texRECT(samplerRECT tex , float3 sz ) 2D nonprojective texture rectangle depth compare texture query (OpenGL only)
texRECT(samplerRECT tex , float3 sz , float2 dsdx , float2 dsdy ) 2D nonprojective depth compare texture query with derivatives (OpenGL only)
texRECTproj(samplerRECT tex , float3 sq ) 2D texture rectangle projective texture query (OpenGL only)
texRECTproj(samplerRECT tex , float3 szq ) 2D texture rectangle projective depth compare texture query (OpenGL only)
tex3D(sampler3D tex , float3 s ) 3D nonprojective texture query
tex3D(sampler3D tex , float3 s , float3 dsdx , float3 dsdy ) 3D nonprojective texture query with derivatives
tex3Dproj(sampler3D tex , float4 sq ) 3D projective texture query
texCUBE(samplerCUBE tex , float3 s ) Cube map nonprojective texture query
texCUBE(samplerCUBE tex , float3 s , float3 dsdx , float3 dsdy ) Cube map nonprojective texture query with derivatives
texCUBEproj(samplerCUBE tex , float4 sq ) Cube map projective texture query (ignores q)

Because of the limited pixel programmability of older hardware, the ps_1_1 , ps_1_2 , ps_1_3 , and fp20 profiles have restrictions on the use of texture-mapping functions. See the documentation for these profiles for more information.

In the table, the name of the second argument to each function indicates how its values are used when performing the texture lookup:

  • s indicates a one-, two-, or three-component texture coordinate.
  • z indicates a depth comparison value for shadow map lookups.
  • q indicates a perspective value, and is used to divide the texture coordinate ( s ) before the texture lookup is performed.

When you use the texture functions that allow specifying a depth comparison value, the associated texture unit must be configured for depth-compare texturing. Otherwise, no depth comparison will actually be performed.

E.4 Derivative Functions

Table E-4 presents the derivative functions that are supported by the Cg Standard Library. Vertex profiles do not support these functions.

Table E-4. Derivative Functions

Function Description
ddx( a ) Approximate partial derivative of a with respect to screen-space x coordinate
ddy( a ) Approximate partial derivative of a with respect to screen-space y coordinate

E.5 Debugging Function

Table E-5 presents the debugging function that is supported by the Cg Standard Library. Vertex profiles are not required to support this function.

Table E-5. Debugging Function

Function Description
void debug(float4 x ) If the compiler’s DEBUG option is enabled, calling this function causes the value x to be copied to the COLOR output of the program, and execution of the program is terminated.

If the compiler’s DEBUG option is not enabled, this function does nothing.

The intent of the debug function is to allow a program to be compiled twice—once with the DEBUG option and once without. By executing both programs, it is possible to obtain one frame buffer containing the final output of the program and another frame buffer containing an intermediate value to be examined for debugging purposes.